Postdoc Position in Basin-Scale Geomechanical Screening of CO2 Storage Hubs
Offer DescriptionAre you interested in enabling giga-tonne CO2 storage? Would you enjoy working at the interface between geoscience, engineering, and numerical modelling? Then this project may be just right for you!Job description
Scaling up CO2 storage from the current level to the gigatonne-scale that meets ambitious storage targets in the EU, UK, and North America requires a cluster approach, whereby multiple CO2 emitters use shared transportation and storage infrastructure. CO2 storage clusters have emerged as an attractive option because storage projects are centralized around hubs to maximize injection into highly prospective regional aquifers, e.g., identified in storage atlases as having sufficient theoretical capacity for large-scale deployment of CO2 storage. This approach is based on the economy of scale, where a shared transport infrastructure serves major industrial clusters that emit large quantities of CO2.While being economically attractive, the cluster approach raises important questions about identifying and assessing technical or commercial risks. In fact, when several CO2-storage projects are collocated in one hydrological unit, operations in one project can affect operations and risks at neighbouring projects, and even in the far-field beyond a specific storage project. While the migration of a CO2 plume is usually constrained to a specific storage project, pore pressure builds up cumulatively across the storage region because individual storage projects interact hydraulically with each other. Such pressure interference also operates at much faster time scales. An unexpectedly high pore pressure buildup in (parts of) a storage region can affect storage risks. For example, the increase in reservoir pressure can cause faults to slip, which induces seismicity and opens potential leakage paths through which CO2 can escape later.If those risks are not identified, the only option to mitigate them during storage operations is to either reduce injection rates or to develop additional storage projects, both of which would be prohibitively expensive and lead to liability challenges between the storage operator and CO2 emitter that undermine trust in the development of future storage clusters and likely a failure to meet CO2 storage targets. An early risk assessment is therefore imperative so that suitable storage clusters can be identified reliably and problematic project areas within a storage region can be avoided. Considering that developing a single storage project takes between 8 and 10 years from initial assessment to first injection, technical innovations are urgently needed to identify suitable, low-risk locations for future storage clusters at the pace required to meet the CO2 storage targets for 2030 and 2040.The Clean Energy Technology Partnership has recently funded the project “Multiscale Pressure-Stress Impacts on fault integrity for multi-site regional CO2 storage hubs (MUPSI)” to address the challenge of identifying geomechanical risks in CO2 storage clusters. MUPSI is an international consortium involving partners from industry and academia.As part of the MUPSI project, we are recruiting a 3-year postdoctoral researcher to develop efficient screening methods that identify the first-order geomechanical risks during basin-scale CO2 storage using more advanced constitutive models that represent fault physics and risk of fault slippage during CO2 injection and pressure build-up. This work will be based on a newly developed vertically integrated modelling framework that analytically reconstructs the CO2 plume shape and pressure distribution while considering the presence of faults and CO2 migration through the high-permeable fault damage zone. Approximating the stress-dependency of the fault damage zone will be improved by developing new constitutive models. These constitutive models will be derived by utilising experimental data provided by a project partner in advanced numerical simulations that investigate fault displacements across a range of fault geometries, stress-permeability relations, petrophysical properties, and boundary/initial conditions. The updated vertically integrated modelling framework for basin-scales.Requirements
As a successful applicant, you hold a PhD degree in applied geology or reservoir engineering or a related field and can demonstrate your strong background in reservoir geomechanics. A sound quantitative approach including programming experience (e.g., Python, Matlab) and experience in applying numerical simulators are also essential for this position. Knowledge in CO2 storage and multiphase flow modelling are also desirable.Due to the highly interdisciplinary, international, and collaborative nature of the research consortium, excellent communication and interpersonal skills, as well as the desire to work in a very diverse and interdisciplinary environment, are an essential requirement.
Salary and benefits are in accordance with the Collective Labour Agreement for Dutch Universities. The TU Delft offers a customisable compensation package, discounts on health insurance, and a monthly work costs contribution. Flexible work schedules can be arranged.For international applicants, TU Delft has the . This service provides information for new international employees to help you prepare the relocation and to settle in the Netherlands. The Coming to Delft Service offers a for partners and they organise events to expand your (social) network.Additional information
For more information about this vacancy, please contact Sebastian Geiger .Application procedure
Are you interested in this vacancy? Please apply no later than 6 December 2024 via the application button and upload the following documents:
You can address your application to Sebastian Geiger.Please note:
(for details page 45:Where to apply WebsiteRequirementsAdditional InformationWebsite for additional job detailsWork Location(s)Number of offers available 1 Company/Institute TU Delft Country Netherlands City Delft Postal Code 2628CD Street Mekelweg 5 GeofieldContact CityDelft WebsiteStreetMekelweg 2 Postal Code2628 CDSTATUS: EXPIREDShare this page
Delft, Zuid-Holland
Sat, 02 Nov 2024 02:00:12 GMT
To help us track our recruitment effort, please indicate in your email/cover letter where (vacanciesineu.com) you saw this job posting.
Location: Manchester (M41) - Lancashire, North West, United Kingdom Salary: £36.32 - 36.32 per hour…
Job title: Research Fellow Company: University College London Job description About usBiosciences is one of…
Job title: Regional Center Installation Manager Company: Alstom Job description Leading societies to a low…
Job title: German-speaking Business Development Representative in Barcelona Company: Nordic Jobs Worldwide Job description Job…
Job title: Manager Vers & Service Company: Albert Heijn Job description Carrière met een lange…
Job title: Sales Specialist Company: TeamQuest Job description Our client is an international logistics and…