PhD Candidate Physics-Informed Neural Networks for Multi-Hazard Modelling
University of Twente
Job descriptionNatural hazards such as earthquakes, floods, and landslides pose significant risks to human populations, infrastructure, and ecosystems. These hazards rarely occur in isolation; they often trigger or interact with other processes, leading to multi-hazard effects. For instance, an earthquake may trigger landslides, which in turn can block rivers, causing floods. Accurate prediction and simulation of such multi-hazard events is essential for improving disaster preparedness, risk mitigation, and resilience. However, modeling these interconnected physical processes is extremely complex. Traditional numerical methods like finite element or finite difference models are highly effective in simulating individual hazards, but they face limitations when applied to multi-hazard scenarios, especially at large scales or in real time due to data scarcity and undefined/uncoupled physical models. The interplay between different physical processes involves nonlinearity, high-dimensional parameter spaces, and uncertainty, all of which make conventional methods impractical for multi-hazard systems. Physics-Informed Neural Networks (PINNs) offer a promising new approach. By embedding physical laws directly into neural networks, PINNs can simulate complex systems while ensuring that the predictions remain consistent with the governing equations of the underlying physics. This hybrid approach has shown great potential for reducing computational costs and improving the accuracy of models, even in data-scarce environments.This PhD position is funded by the Dutch national earth and environmental sector plan, to advance the scientific field of AI on early warning systems. It aims to develop advanced Physics-Informed Neural Networks (PINNs) for modeling the complex interactions between multiple geophysical processes, specifically earthquakes, and landslides. The primary objective is to create a unified, scalable framework that accurately simulates these coupled hazards while addressing computational efficiency and uncertainty quantification. Central to this work is the coupling of partial differential equations (PDEs) governing seismic wave propagation, soil stability, and potentially multi-phase flow, allowing the PINNs to capture the nonlinear, multi-scale interactions between these hazards. This research will also investigate feedback mechanisms and energy transfer between hazards, embedding these principles within the network architecture to simulate how an initial hazard evolves into a multi-hazard event. By optimizing PINN architectures, this research aims to enable real-time, large-scale multi-hazard simulations, offering a powerful tool for early warning systems in data sparse regions.Requirements
Conditions of employment
DepartmentThe Department of Applied Earth Sciences combines earth scientific knowledge with dynamic modelling and advanced remote sensing, to analyze earth systems and processes in space and time. Our goal is to contribute to global challenges concerning future demands for earth resources and to help reduce disaster risk and the impact of natural hazards on communities living in changing environments.Additional informationFor more information about the position, you can contact Ashok Dahal (email: a.dahal@utwente.nl). You are also invited to visit our homepage.For questions about working and living in the Netherlands please consult the or the .Please submit your application before December 15th, 2024. Potential candidates are requested not to use LLM tools (e.g. ChatGPT) to write their application. Your application should include:
The interviews will be held after the second week of January.
€2872 per month
Enschede, Overijssel
Sat, 09 Nov 2024 23:23:57 GMT
To help us track our recruitment effort, please indicate in your email/cover letter where (vacanciesineu.com) you saw this job posting.
Location: Dunaharaszti (2330) - Hungary Salary: Competitive Type: Permanent Main Industry: Search Information Technology Jobs…
Location: Lier (2500) - Flanders, Belgium Salary: Competitive Type: Permanent Main Industry: Search Construction Jobs…
Job title: Lead Developer Company: Fontys Hogeschool Job description Met jouw uitgebreide kennis, ervaring en…
Job title: Early Careers Teacher (ECT) Company: Academics Job description Early Careers Teacher (ECT) -…
Job title: NEOLAUREATO/A AMBITO INFORMATICO Company: OTS Job description OTS è un managed service provider…
Job title: Senior Shopify Developer, hibrido Company: Rocket Digital Job description Senior Shopify DeveloperWHO WE…